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ABSTRACT 

In this paper, we show that an inner function f has finite entropy if and only if 
its derivative f '  lies in the Nevanlinna class. We prove also that the entropy o f f  
is given by the average of the logarithm of If 'l .  The proof is based on the fact 
that, evenf being highly discontinuous on the circle, the action o f f  -n on Borel 
subsets is smooth. 

Introduction 

We shall write D = [z E C I Izl < 1} and S 1 = [z E C I Izl = 1}. An inner func-  

tion is a ho lomorph ic  m a p  f :  D --, D such that  for  a.e. z E S l the radial  limit 

f * ( z )  :=  limr_~lf(rz) belongs to S ~. It  is easy to see that  f *  preserves Lebesgue 

measure  ~ on S 1 if and only if f ( 0 )  = 0 and in this case f *  is ergodic.  Our  a im is 

to characterize the inner functions f for  which the en t ropy  h× ( f * )  is finite and to 

give a fo rmula  for  calculat ing it. 

Before stating the result, let us recall some preliminary facts. Every holomorphic  

funct ion f :  D ~ D can be writ ten as 

: _ - _ - - _ e x p  - - -  dl~(t) , 
~l  z 

z E D, where/~ is a finite positive measure  on S ~ and (ai) is the sequence of  zeros 

o f f  (it can be empty) .  This sequence satisfies 

(1  - l a ~ l )  < oo.  
i 

The  funct ion f is an inner funct ion  if and only if # is s ingular  with respect  to k. 

The funct ion f *  : S 1 -~ Sl can be very discontinuous. I f  z E S ~ is a singular point  

o f f  (i.e., z is an accumula t ion  point  o f  the sequence (ai) or  is in the suppor t  
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of /z)  then f *  maps every neighborhood of  z onto S I. On the other hand, if z is 

not a singular point, f extends holomorphically to a neighborhood of  z. 

The dynamics of a holomorphic map f :  D ~ D is described by the following re- 

sult due to Denjoy and Wolff [De]: 

There exists p E [) such that lim,_~=f"(z) = p uniformly on compact sets of D. 

Moreover, i f p  E D, f ( p )  = p and I f '(P)[ < 1. In particular, a holomorphic map 

f :  D -~ D has at most one fixed point. 

W h e n f  is an inner function and p is a fixed point o f f ,  it is easy to prove that 

the harmonic measure )~p on S 1 is f*-invariant .  Recall that Xp can be defined as 

the unique probability measure such that the integral of  a continuous function 

~b : S l ~ R is given by 

~ ~bd3,p = ~(p),  
1 

where ~ is the unique extension of ~b which is continuous in D and harmonic in D. 
It results then from the Poisson formula that 

d)~p Z + P 
dX (z) = R e - - .  

z - p  

Aaronson [A1] and Neuwirth [N] showed that •p is exact, i.e., denoting by 

6~(S I ) the Borel o-algebra of S 1, the t~-algebra (~ := A,%0 (f*)-~((B(S l )) contains 

only sets of  measure zero or one. 

On the other hand, it follows from the results of Neuwirth [N] that if f *  has 

an invariant probability measure/~ absolutely continuous with respect to the Le- 

besgue measure, then f has a fixed point p and ~p = t~. More on the ergodic prop- 

erties of  inner functions can be found in [A2], [Poll  and [Po2]. 

Our aim is to calculate the entropy o f f *  with respect to Xp w h e n f ( p )  = p. We 

say that a holomorphic map g : D ~ C is in the Nevanlinna class (and we denote 

this by g E N)  if 

f log+lg(rei°) I dO < sup QOo 
r< l  ,]S i 

In this case, there exists the radial limit g*(z) = limr_l g(rz) for a.e. z E S ~ and 

II°glg*ll < = .  d~ 

THEOREM A. Let f be an inner function with a fixed point p E D. Then 

hxp(f*) < oo i f  and only if f '  E N and in this case 
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f ,  
hxp(f*)  = Js ~ logl(f')*[ dXp. 

This theorem was conjectured by Fernandez [F] and proved by Martin [M] when 

the set of  singular points o f f *  is finite. 

Observe that to prove Theorem A we can assume without loss of  generality that 

the fixed point p is p = 0 (conjugating f with a M6bius map of  D that maps p 

to 0). Therefore, from now on, f will be an inner function such that f (0)  = 0. The- 

orem A is clearly a consequence of  the following two theorems: 

TaEOREM A.1. I fhx( f*)  < oo then f" E Nand 

hx( f* )  > I logl(f')*[ dX. 
Js I 

THEOREM A.2. I f  f '  E N then 

hx( f* )  < I l °g l ( f ' )* l  d;~. 
Js 1 

To prove Theorem A. 1 we shall use a result of  Rohlin [R] which says that if T 

is a measure preserving map of  the probability space (X,6t, ~), where X is a met- 

ric space and (~ its Borel a-algebra, and its entropy is finite, then T maps zero mea- 

sure sets in zero measure sets and X can be partitioned in sets where Tis injective. 

This easily implies that T has a jacobian JT that satisfies 

ix(T(A)) = fA JTdg, 

for every A ~ t~ such that T[A is injective. Rohlin also proves that 

h,(T) >_ I logJTdl~. 
as 1 

Theorem A. 1 will follow applying these results to f *  and using the partition given 

above to show, relying on results of  Heins [H], that f '  has radial limit a.e. Then 

we shall show that the jacobian o f f *  is just ] (f ' )* 1 and the Rohlin inequality be- 

comes the inequality in Theorem A. 1. Finally, we shall use a result of  Ahern and 

Clark [A-C] to conclude that f '  E N. 
The proof  of  Theorem A.2 is subtler. One must keep in mind that Lebesgue 

measure preserving discontinuous maps of S 1, even being real analytic on an open 

full measure subset of  S 1, can have, due to the discontinuities, an entropy much 

larger than the average of  the logarithm of  its derivative. For instance, it follows 
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from Arnoux, Ornstein and Weiss [A-O-W] that there exist interval exchange 

maps of S 1 with infinite entropy. The proof of Theorem A.2 will be based on the 

fact that, even f* being highly discontinuous, the action of (f*)-n on Borel sub- 

sets is smooth. More specifically, we shall show that there exist partitions 6' of S 1 

into finitely many intervals such that, given A E 6 ~, there exists an open disk Do 

such that Do tq S l = A and a normal family of holomorphic functions T)n~: 

Do ~ C, where n E N and 1 <_ j <_ #(P~n~ (we are denoting by (P~ the partition 

6 ~ v . . . v  (f*)-~((P)) ,  such that T)~(A) C R and 

X((f*)-n(S) N Bj) = fs r)")dX, 

for all n E N, S C A and Bj E (P(n). 

Theorem A. 1 will be proved in the next section and Theorem A.2 in section 2, 

using certain partitions, that among other properties will satisfy those explained 

above. The construction of these partitions is the objective of sections 4, 5 and 6. 

This paper is a version of my thesis. I wish to thank specially R. Marl6, under 

whose guidance this work was carried out, and also J. C. Yoccoz, P. Sad, W. de 

Melo and C. Doering for several helpful conversations and corrections of the first 

draft of the paper. 

1. Proof  of  Theorem A.1 

We start with a general result. Let X be a separable metric space and g be a prob- 

ability on (B(X). Let F:  (X,(B(X),g) ---, (X,(B(X),g) be an endomorphism with 

h~ (F) < oo. Rohlin proved that F is countable to one (see definition in [Pa]) and 

consequently satisfies the following properties: 

(1.a) F is positively measurable, i.e., if A E (B(X) then F(A) E (B (X)(mod 0). 

(1.b) F is positively non-singular, i.e., if A E 6~(X) and g(A) = 0 then 

#(F(A)) = 0. 

(1.c) There exist disjoint Borel sets A1,A2 . . . .  such that g ( U A i )  = 1 and 

F[Ai is injective, Vi E N. 

Using these properties, it is easy to prove the existence and uniqueness of a func- 

tion JF, called the jacobian of F, such that 

g(F(A)) = fA JFd#, 

when A E (B(X) and F[A is injective. 
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Rohlin also proved that 

hu(F) >_ fxlOgJFdlz. 

Let us introduce the angular derivative. We say that an inner function f has an 

angular derivative at x E S ~ if f *(x) exists and has modulus 1 and if (f ')*(x) = 
limr_~f'(rx) exists. If f fails to have an angular derivative we shall write 

[(f')*(x)[ = ~ .  Note that this does not imply that [f'(rx) I ~ o0 as r ~  1. 

I f f  has an angular derivative at x, then for every ot > 1 

f ( z )  - f*(x)  
lim - ( f ' )*(x),  
z - - , x  Z - -  X 

where 

D I x - z l  1 r~¢x) = z s 1 -Iz------~ < ~ 

is the Stoltz angle. More details about the angular derivative can be found in 

[Ca,¶298,299]. 

We shall need the following two theorems, proved in [A-C]. 

THEOREM 1.1. I f  f is an inner function given by 

f ( z )=eiO]-~( la i l  z - a i ]  ( fs t + z d ~ t ( t ) )  
, a ,  ~ - ~ T ~ )  e x p  - , t - z 

then, for all x E S ~, 

1 - l a ,  I ~ 
I ( f ' ) * ( x ) l  = 

i I x -  ail 2 
+ 2fs  I Ix - tl-2dt~(t). 

TX-mOREM 1.2. I f  f is an inner function such that log+l(f ' )  * I E •1 then f '  E N. 

PROPOSmON 1.3. Let f :  D ~ D be an inner function with f(O) = O. Suppose 
that f*  :S l ~ S l satisfies the properties (1 .a), (l.b) and (1.c) with F =f* .  Then the 
jacobian o f f *  is equal to I ( f ' )* l .  

The proof of this proposition is given below. Another proof can be found in [H]. 
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It is now easy to prove Theorem A.1. We know that hx(f*)  < oo implies that 

f*  is countable to one [see Pa, ch. 10]. By Proposition 1.3 and the considerations 

above, it follows that 

t '  
hx(f*)  >- l l o g l ( f ' ) * l  dR. 

as 1 

It remains to prove that f '  E N. But since f (0)  = 0, using Theorem 1.1, we 

have that I(f ')*(x)l - 1, vx ~ s t. Hence logl(f ' )* I = log+l(f ' )* [ and therefore 

log+l(f ' )* [ E £1. T h u s f '  E N, by Theorem 1.2. 

The rest of this section is devoted to the proof of Proposition 1.3. 

Heins showed in [H] that if A E 6~(S ~ ) is such that f*  IA is injective, t h e n f  has 

angular derivatives at a.e. x E A. Therefore if f *  satisfies (1.a), (1.b) and (1.c) 

then f has angular derivatives a.e.  

DEFINITION 1.4. We say that f*  : S t ~ S t is almost uniformly differentiable if 

for every Co > 0 there exists E C S t with ) , ( E )  > 1 - Co and such that f*  1~ is uni- 

formly differentiable, i.e., 

w > 0, ~5 > 0 such that if x E E,  x + h E E,  I h ] < 6 then 

If*(x + h) - f*(x)  - g ( x ) ' h  i < e - Ih l ,  

where g : S t --, C is a function. This function is called the derivative o f f *  and is 

denoted by (f*)"  

LEMMA 1.5. Suppose that f*  has angular derivatives a.e. Then f*  is almost 

uniformly differentiable and 

( f* ) '  = (f ' )*.  

PROOF. Given eo > 0, there exists E E ~ (S t ) with h (E) > 1 - ~o and satisfy- 

ing the following: 

Given ~ > 0, there exists ~ > 0 such that if x E E, x + h E E and I hl < 6 then 

and 

I ( f ' )* (x  + h) - ( f ' )* (x) l  - ~, 

I f ( z )  - f * ( x )  - ( f ' ) * ( x ) .  (z  - x ) l  < c. Iz - x l  

If(z) - f * ( x +  h) - ( f ' )* (x  + h) ' ( z  - x -  h) I < c-Iz - x -  h I , 
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where z is the point of intersection of the line that passes through x making an an- 

gle 7r/4 with the radius joining x to 0 with the line that passes through x + h mak- 

ing an angle - l r /4  with the radius joining x + h to 0 (see Fig. 1). Observe that z 

satisfies 

~ Ihl [ z - x ]  = - ~  . ]h I and [ z -  x -  h I = --~ . . 

Since 

If*(x + h)  - f * ( x )  - ( f ' ) * ( x ) . h  I 

= ] f * ( x  + h)  - f ( z )  + f ( z )  - f * ( x )  - (f ' )*(x)  

• ( z -  x )  + ( f ' ) * ( x ) ( z -  x -  h) I 

< If(z) - f * ( x  + h)  - (f ' )*(x) 

• ( Z -  x -  h)[ + I f ( z )  - f ' ( x )  - ( f ' ) ' ( x ) .  ( z -  x) l ,  

Fig. 1. 
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it follows that 

I f*(x + h) - f * ( x )  - ( f ' ) * ( x ) " h i  

-< I f (z)  - f * ( x  + h) - ( f ' ) * ( x  + h ) .  (z  - x - h)l 

+ I[(f ' )*(x + h) - ( f ' )* (x ) ] .  (z - x - h) I 

+ If(z)  - f * ( x )  - ( f ' ) * ( x ) .  ( z  - x)l 

34~ 
-< - - . , -  Ihl .  

2 

Hence f *  is uniformly differentiable in E with derivative (f ')*.  Therefore f *  is al- 

most uniformly differentiable with derivative (f ' )* .  

Let us now prove Proposition 1.3. Since f *  satisfies (1 .a), (1 .b) and (1 .c), there 

exist sets A I ,A2  . . . .  with h ( ( 3 A i )  = 1 and such that f *  IAi is injective. Define/£i 

as the measure on Ai given by 

#;(S) = ) , (f*(S)) ,  

¥S CAi .  Then, by the definition of  the jacobian, 

d#____! = J ( f * ) .  
d)~ 

Proposition 1.3 is a consequence of  the following lemma: 

LEUMA 1.6. Suppose  that f *  is a lmost  uni formly  differentiable. Let  A E Sl be 

such that f *  IA is injective and  define the measure ~ on A by 

~( s )  = x ( f * ( s ) ) ,  

¥ S  c A .  Then 

d r  = I ( f*) ' l .  
d), 

PROOF. Let E C A be a Borel set with h (E)  > )~(A) - eo and such that f *  ]e 

is uniformly differentiable. 
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CLAIM. ~(S) _< .Is ( l(f*) ' l  + e) dX, where e > 0 and S C E are arbitrary. 

Indeed, take (5 > 0 such that I hl < ~ then 

I f*(x  + h) - f * (x )  - ( f* ) ' ( x ) .h]  < c - Ih t ,  

for all x E E and x + h E E. Let [11 . . . . .  LI  be a covering of S by open disjoint 

intervals of length less than 6 and such that 

)~(/J)  _< 1 + 5', 
),(/j n s) 

Vl _<j _< r, where 3' > 0 is arbitrary. Then i f x j  E S 0 Ij, we have 

and therefore 

This implies that 

X( f* (S  n Ij)) < (l(f*)'(xj)l + e ) . x ( I  i) 

X(f*(S)) <_ ~ (l(f*)'(xj)[ + e).X(I/). 
j= l  

)~(f*(S)) <_ (l(f*) ']  + e)d),  
j=l X(S n / j )  n~j 

_< (1 + y ) f s  ( l ( f*) ' l  + e)d)~. 

Since 5' is arbitrary, this proves the claim. 

Since e and eo are also arbitrary, it follows from the claim that 

d/z _< I ( f*) ' l .  
d), 

At points where ( f*) '  vanishes, the equality holds trivially. At the other points, 

apply the same reasoning to the inverse of f*  IA, that we denote by g, and use 

Lemma 1.7, that is proved below, to conclude that 

d# 1 
- -  > - [ ( f * ) ' I .  
d)~ Ig'l 

This proves Lemma 1.6. 
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LEMMA 1.7. Suppose that f *  IA is injective and has a derivative satisfying 
( f*) ' (x)  #: 0, vx E A. Let g : f*(A) ~ A be the inverse o f f *  IA. Then g is almost 

uniformly differentiable and its derivative is g'(x) = l / ( f *  )'(x). 

PROOF. Let E C A be a compact set with X(E) _ X(A) - e0 and such that 

f *  I t  is uniformly differentiable with l ( f* ) ' (x ) l  > c > 0, v x  ~ E, for some c > 0. 

Fix y = f * ( x ) .  Suppose that y + k E f * ( E ) ,  i.e., y + k = f * ( x  + h), for some h 

satisfying x + h E E. Then 

g(y  + k) - g(y)  
k 

(f--(x)*)' II = h - (f'(x(.yi~,(_.~ + h) - f ' ( x ) )  t 

< If*(x + h) - f ' ( x )  - ( f*) ' (x) .h l  
C 

If  we take e < c/2, and Ih[ < ~(e), then 

It follows that for Ikl < (c/2).i t  we have 

g(y  + k) - g(y)  ( f*) ' (x)  
1 

-< Ihl 
C 

_< Ikl 
C2 " 

This proves that g ]f'~E) is uniformly differentiable with derivative g'(x) = 
1/ ( f*) ' (x ) .  Hence g is almost uniformly differentiable and g'(x) = 1 / ( f*) ' (x) .  

2. Transition functions, jacobians and the proof of Theorem A.2 

In this section we reduce the proof of  Theorem A.2 to Theorem 2.2 below. 

Let F :  (X,6t,/~) -* (X,(~,#) be an endomorphism of  a probability space 

(X,t / ,#) .  Given A , B  E (~ define the transition function, TAsF:A ~ R, by the 

property 

s TABF d# = #( F- I  ( S) tq B), 

VS C A. By the theorem of Radon-Nykodim TAsF exists and is unique. 
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Let 6' be a partition of  (X,(~,#). We denote by 6)(n)(x) the atom of  6)(n) := 

6) v . . .  v F-n6) that contains x. Let x E S l be such that Te(F,x)e{,)(~)Fn(Fnx) ~ O. 
Define the n th  jacobian of  F with respect to 6 ) at x by 

J~")F(x) = [Te{F,x)6,~,~(x)Fn(Fnx)]-l. 

LEmaA 2.1. Suppose that T6,(F.x)6,(.)(x)Fn(u) ~ O, for a.e. u E 6)(F"x). Then 

vS C 6)(F"x). 

Sr J~n)Fd# = #(S) ,  
- n ( s ) n 6 ~ t ' O ( x )  

PROOF. Write 3C = t~ O 6)(F"x). On the space ( 6 ) ( F " x ) , ~ )  we have the mea- 

sures ~/1 (S) = #(S)  and ~/2(S) = #(F-"S n 6)(re(x)). 

By definition, 

d~2 
To,( }F ~ - -  .~. F n x ) ( p ( n ) ( x  • 

d,ll 

Write ~- = F - n ~  n 6)(n)(x). On the space (6)(~)(x),q:) we have the measures 

~ (A) = #(A)  and ~2(A) = #(S) ,  where A = F - ' S  n 6)(~)(x). We can prove, 

using the hypothesis of  the lemma, that ~2 is well defined. 

Since (Fn)*7/l = ~2 and (Fn)*7/2 = ~1, we have 

and therefore 

We conclude that 

d~__ ! = d~/2 o Fn 
d~2 d~l 

d¢2 -_ ( o 

F-"tS)n6'¢"qx) J~m F d# = #( S), 

proving Lemma 2.1. 

Recall that if H :  I--, R is a function defined on the interval I, the oscillation of  

H is defined by 

o s c H  = sup [H(x)  - H ( y )  I . 
x ,  y E l  
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THEOREM 2.2. Given e > 0, there exists a partition 6' = (P~ = Ill . . . . .  Ip} o fS  l 

into intervals satisfying the following properties: 

(P1) Write (pt,) = [Bx . . . . .  Bs]. Then T1~8~(f*) ~ is real analytic, vl  _< i ___ p, 

l<_j<_s. 

(P2) Let B~ . . . . .  Br be the atoms of  6 ~<n) such that ( f * ) ' ( B j )  = I~, where 

2 <__ i <__ p - 1 and Br+t . . . . .  B~ be the atoms of(P In) such that ( f * ) ' ( B j )  = Ii, 

where i = 1 or i = p. 

Then there exists A = A(e)  > 0 independent o f  n such that: 

OSC(TliBj(f ) ) < A.  
j = l  

(P3) I f  i = 1 or i = p, then 

II, I <- ~. 

(P4) p .¢  < 1. 

Moreover, i f  (¢t) is a sequence decreasing to zero, we have 

(P5) 6),, _< (P,2 - < " "  

and 

(P6) V ( f*) -"6) , ,  = (B(S~) • 
/_>1 
n>_O 

The proof  of  this theorem is the aim of  sections 3, 4, 5 and 6. Let us see how 

Theorem A.2 follows from Theorem 2.2. 

In the calculations that follow, we shall write f instead o f f * .  

We write Bj = (Ptm(x) and Ii = (P(fnx).  It follows from property (P1) that if 

~(Bj) > 0 then T1~Bjf"(u) :# 0, for a.e. u E It. It results then from Lemma 2.1 

that 

Then 

h(I~) = fnjJ~n) f (y)  d•(y) .  

(*) 

But 

x(I,) [1 + 1 J~mf(x)  ( j ~ n ) f ( y ) _  J~")f(x) d ) , ( y ) ] .  
[ s$" ) f ( x )  aBj 1 

J g ) f ( y )  - J g ) f ( x )  
J g ) f ( y ) J g ) f ( x )  = T 6 B J f n ( f n Y ) -  TI~B~jr'trnX',j , 
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and therefore 

j(n)f(y) _ j(n)f(x) 
J(6,n) f(x) <-- J(n) f(y)osc(Tl~Bjfn). 

Replacing in (*), we have 

X(Bj--~ -- ~-BJ) Osc(TI, Bjfn) j(n)f(y) dR(y) . 

Using Lemma 2.1 and the inequality e x _> 1 + x, which holds for vx E R, we 

obtain 

x(/~) 
X(BA 
_ _  < j~n)f(x)exp [ ),(Ii) - h-(--~j)j) ° sc (T68Jn )  / " 

Write c = infl_<i_<p k(Ii) .  Then 

C 

x(B~) 
_ _  < J~")f(x)expI OSC(T6BJ") I. 

~ . ( B j )  

Take logarithms in the above equation and integrate over Bj. It results that 

( logc - logk(Bj))k(Bj) < fsjlogJ~")fdk + osc(ThBJ"). 

Summing in j from 1 to r, 

(**) 

r 

logc ~ X(Bj) - ~, X(Bj)log X(Bj) 
j = l  j = l  

_ f : + U)=,B~ j=l 

From property (P3) it results that ~ = t  kCBj) >_ 1 -- 2¢. Then, from the inequality 

- - ~ a j l o g a j < ~ a j ( l o g t - l o g ~ a j ) ,  
j = l  j = l  j = l  

which is valid for every 0 < aj _< 1, 1 _.< j _ t, we have 

- ~ X(Bs)IogX(Bj) < 2 e [ l o g ( s -  ( r +  1)) - log2e] 
j = r + l  
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and since s - (r + 1) _< 2p", we conclude that 

- ~ X(Bj)IogX(B i) _< - 2 e l o g 2 e  + 2nelog2p.  
j = r + l  

Replacing these inequalities in (**) and using property (P2) we obtain 

1 _ 2nelog2p < fs  l°gJ~n)fdX + A. logc(1 - 2~) + Hx(6 ~tn)) - 2elog 2--~ - 

Divide now the two members of  the inequality by n and make n go to infinity. It 

results that 

- 2e log2p  _< lim sup -1 f logJ~nlfdX. hx(f ,~)  
n~oo  n ~]s i 

It follows from property (P4) that the second term of the first member of  the in- 

equality above tends to zero, when e decreases to zero. Hence 

lim hx(f,(P~) -< lim sup -1 f logJ~,,)fdX" 
e~O n~oo  n 'JS I 

The limit of the first member exists by property (PS). Besides, it follows from (P6) 

that this limit is exactly h×(f) .  Thus 

(***)  h×(f)  _< lim sup -1 f log J~m f dS. 
n~oo n J s  1 

PROPOSITION 2.3. Let f be an inner function with finite angular derivative a.e. 

Then 

(1) (fn)* = (f*)~ and 
(2) f~ has finite angular derivative a.e., with 

n--I 

I[(fn)']*(x)l = I I  I(f')*(fJx)l 
j=O  

for  a.e. x E S 1. 

PROOF. Suppose that f has finite angular derivative ( f ' )*(y)  at the point y. 

Then the image of any curve which is orthogonal to S 1 at y is orthogonal to S 1 at 

f* (y ) .  This is sufficient to prove (1). Moreover, if 0 < r < 1 

n--1 

I(fn)'(rx)l = ~ I f ' ( f / (rx)) l .  
j=O  
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Making r tend to 1 and using the observation above we conclude that 

n-I 

I[(f") ' l*(x)l = ~ I(f ')*(ff(x))l 
j=O 

for a.e. x E S ~. This proves (2). 

PROPOSITION 2.4. Let f be an inner function, f(O) = O, and (P be a finite par- 
tition orS ~. Suppose that f '  E N. Then 

J~')f*(x) ~_ ][(ff) ']*(x)l 

for a.e. x E S ~. 

PROOF. Since f '  E N, f has finite angular derivative at a.e. x E S ~. It follows 

then from Lemma 2.3 that the same holds f o r f f  and that ( f" )*  = (f*)~. Heins 

proved in [HI that in this case (f*)n satisfies the properties (1.a), (l.b) and (1.c) 

from section 1. We have then the jacobian of  ( f*)" ,  denoted by J [ ( f* ) " ] ,  as in 

section 1. And it follows from Proposition 1.3 that J [ ( f* )" ]  = I [ ( f " ) ' ] * l  . 

Let A, B E 63 (S 1 ) be such that (f*)n(B) = A. Then it follows from the defini- 

tion of the jacobian that 

fBJ[(f*)n] >_ k(A),  dk 

with equality holding if and only if ( f*)"lB is injective. Suppose now that A E 

6'((f*)"(x))  and B E tP(")(x). It follows then from Lemma 2.1 that 

Hence 

fe J~n)f* dX = k(A).  

J~mf*(x) <_ J[( f*)nl(x  ) = l[(f~)']*(x)l,  

for a.e. x E S ~. 

Using Lemma 2.3 and Proposition 2.4 we conclude that 

l fs  logJ~mfd~< fs logI(f')*] dk. 
! l  l i 

This, together with (***), proves Theorem A.2. 



144 M. CRAIZER Isr. J. Math. 

3. Distortion lemma 

Let g:  C --, C be a finite Blaschke product with g(0) = 0. Let U C C be an open 

set conformally equivalent to D, not containing 0 and symmetric with respect to 

S 1. Let V be a union of  connected components of  g - l ( U ) .  

Define e l  : U-"~ R by 

Ga(z)= ~ loglwl .  
g(w)=z 

wEV 

It is clear that G1 is well defined and harmonic on U \  V(g), where V(g)  is the set 

of  critical values of  g. Moreover, GI is bounded. We can therefore extend it to a 

harmonic function on U. 

Let G:  U - ,  C be a holomorphic map such that Re G = GI. G is unique except 

for an additive constant. 

LEMMA 3.1. (1) G'(Z)  :/: O, VZ E U N S ~. 

(2) Write U N S 1 = (a ,b ) .  Then 

G ( b )  - G ( a )  = i IG'[ dX. 

(3) f~la'l d), = x ( v n  s ' ) .  

PROOf. (1) Consider a point Zo E UN S ~. Since G is a holomorphic map, G is 

equivalent to the map z ---, (z - z0) k in a neighborhood of z0. But G takes D Iq U 

into Re(z) < 0 and D c CI Uinto  Re(z) > 0. Therefore k = 1 and hence G'(zo)  *: O. 

(2) Indeed, G takes U fq S ~ = (a, b) injectively onto an interval of  the imagi- 

nary axis. Hence 

G ( b )  - G ( a )  = i IG'I dX. 

(3) Suppose that z E U \  V(g) .  Then 

G'(Z)  = ~_a --1 w'. 
g(w)=z W 

wEV 

Hence, for every z E U f3 S 1, 

~ ' (z )  = _l ~ 1 
z g~=~ [g'(w)l 

w E  V 
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and therefore 

1 
IG'(z)[ = ~ Ig'(w)l" 

g(w)=z  
wE V 

From this, (3) follows easily. 

When we want to emphasize the dependence of G with respect to the Blaschke 

product g and the union of connected components V of g - ] (U) ,  we denote G 

by Gg, v. 
We recall that a family q= of holomorphic functions in fl is said to be normal if 

every sequence in • has a subsequence which converges uniformly on compact 

subsets of ft. 

PROPOSITION 3.2. Write g = { Gg, v [ g is a finite Blaschke product and V is a 
union of  connected components o f  g - l (  U)}. Then g is a normal family. 

PROOF. Write E(ll,12) = {Z E Clz =/y,  11 < y  < 12} c. It follows then from 

3.1(2) that Gg, v avoids the set E ( - i G ( a ) , - i G ( b ) )  and from 3.1(3) that - iG(b )  + 

iG(a) <_ 1. 
Thus, given a function in g, it omits the segment E(1,2) or else the segment 

E(4,5). Therefore, for each sequence in g, there exists a subsequence that omits 

a whole segment of the imaginary axis. Hence, by Montel's theorem, this sub- 

sequence has a convergent subsequence, proving the proposition. 

Write D r ~- {Z E C I Izl < r} .  

DEFINITION 3.3. Let 7 > 1 be a real number. Let U and U-~ be open sets con- 

formally equivalent to D such that U C U~ and let ~b : Uv --, C be a Riemann map 

of U v. We say that U v is a .y-extension of U i f  ~b(U) C Dl/~. 

Consider a ~/-extension U, of U. 

Let t~: U, ~ C be a holomorphic map whose real part is given by 

Re(~(z) = ~ loglwl, 
g(w)=z  

wE V.~ 

where Vr is the union of the connected components of g-l(U~) containing V. 
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PROPOSITION 3.4. 

A (~, U~) such that 

WxE U. 

PROOF. 

Suppose that G Io = G. Then there exists a constant A = 

I G"(z)l-< A),(V~ N S~), 

Consider the family 

3C = IH  = G(b) i~ G(a) l ' 

where H = Hg. v, varies with the Blaschke product g and the union of connected 

components V~ of g-X(Uv). We can prove, as in Proposition 3.2, that ~ is a nor- 

mal family (see Fig. 2). 

Hence there exists B = B(~, Uv) such that 

IH(z)l -< B, 

vz E U, ¥ H  E ~2. 

v, 

1, 
U~ 

U 

Fig. 2. Case where G [ v *: G. 
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Therefore there exists A = A (3', U~) such that 

In"(z)l -< A, 

Vz E U, v H E  3C. 

The proposition then follows from Lemma 3.1 (3). 

4. Markov partitions 

Let g:  C -* (2 be a finite Blaschke product. We write g* = g Is'. 

DEFINITION 4.1. A partition (P = 111 . . . . .  Ip } of S~ into intervals is a Markov 

partition with respect to g* if for every branch ~b : Ij -* S = of ( g . ) - i  we have: 

~( / j )  n / i ,  0 = ~(/j-) C / i ,  

vl  < i , j < p .  

DEFINITION 4.2. Let ~P = Ill . . . . .  Ipl be a Markov partition with respect to 

g*. We say that (P is compatible with g if there are disks U~, 1 _<j __. p, symmet- 

ric with respect to S 1, satisfying: 

(1) Uj f'l S ~ = / j ,  vl  < _ j < p ,  and 

(2) If V is a connected component of g- l (Uj) ,  then 

V N Ii --/= 0 ~ V FI S ~ C I~, 

Vl <_i, j<_p. 
The disks U i are said to be associated to I j ,  1 _< j _< p. 

DEFINITION 4.3. Let (P = I/1 . . . . .  Ip} he a Markov partition with respect to g* 

and compatible with g. Let Bj, 1 <_j <_ r be the atoms of  (p~,l := (p v . . . v  g-"¢9 

such that g"(Bj)  = / i  with i ~: 1 and i ~:p. We say that 6 ) has bounded distortion 
if there exists a constant A independent of n such that 

supl(Ti, B~g")'(z)l <_ A.  
j= l  ZEIi 

We recall that TAsF denotes the transition function associated to A, B and F (see 

section 2). 

PROPOSITION 4.4. There exist Markov partitions with respect to g*, compatible 

with g and with bounded distortion. 

The rest of this section is devoted to the construction of these partitions. 
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Fix any Zl E D which is not a critical value of  g. Let a,., 1 _< i _< k + 1, be the 

zeros o f g  - zl ordered according to 0 _< lall _<.. .  _< lak+l I < 1. Let g, 1 _< i _< k, 

be the fixed points of g* ordered according to the trigonometric direction. Con- 

sider curves Ci, 1 _< i _< k, C 1 -near to the lines joining ~,. to zl ,  and such that they 

don't  contain critical values of  g. Let Li, 1 _< i _< k, be the lifting of  C~ by g hav- 

ing ~ as base point and let ast,) be the end point of  this lifting. 

LEMMA 4.5. Suppose that 0 <_ jail  -< l a2] < R < 1. Then there exists io, 

1 <_ io <- k, such that L~ o intersects DR. 

PgOOF. Suppose that there are indexes il < . . . <  i2m such that s ( i l )  = 

s ( i 2 )  . . . . .  S(iEm_l) = S(iEm ). Let Fj, 1 _<j _< m, be the curves Li2~_~ v L ~  and Ej, 

1 _< j _< m, be the arcs of  the circle joining ~/2j to ~'i,~+~. Consider the closed curve 

C = F l v  El v . . .  v Fmv Em and denote by S the region interior to this curve. Sup- 

pose also that S is minimal in the sense that there doesn't exist a proper subset of  

S that is the interior of  a curve constructed as above. We shall calculate now the 

number of  zeros of  g - zl in the region S. 

On a curve Fj there is exactly one zero of  g - z l ,  pj = as(i22_j) = as(i2j).  Modify 

the curve Fj in a neighborhood o f p j  in the following way: 

Let Dj be a small simple curve in the intersection of  a neighborhood of  pj with 

the exterior of  S, joining a point of  Liej_ ~ to a point of  L~2j (see Fig. 3). Let Fj  be 

the curve obtained from Fj replacing the part between these points by Dj. Con- 

sider the curve C'  = F~ v El v . . .  v F m v Em and denote by S' its interior. 

The number of  zeros of  g - Zl in S is equal to the number of  zeros of  g - zl in 

S' minus m. The number of  zeros of  g - zl on S' is equal to the index of g(C ' )  

around zl ,  which is precisely 

( . )  1 + ~-~nj + m 
j = l  

where nj denotes the number of  fixed points of  g* in Ej. 

We shall explain this formula now. Each arc Ej is mapped by g onto a curve 

which starts at ~'~2j, gives 1 + nj complete turns around the circle and then ends at 

~'i2j+~. And a curve Fj  is mapped by g onto a curve Gj joining ~'i2j_, to ~'i~ without 

self-intersections. Moreover, we can see that G 1 V El v . .  • v G m V g m is a closed 

curve containing Zl in its interior. This proves that the index of  g(C ' )  around zl 

is given by (*). 

On the other hand, the liftings Li starting at ~ E Ej, 1 _<j _ m, must end at dis- 

tinct zeros of  g - zl belonging to S, by the minimality of S. Hence the number of 
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S' 

S 

ei 

/ 

t g 

Fig. 3. 
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zeros of  g - zl in S that are end points of  some lifting L~ is ~7=~ nj. Comparing 

this with the number of  zeros of  g - zl in S' we conclude that there is exactly one 

zero of  g - Zl in S that is not an end point of some lifting Z i. 

Suppose now that the whole disk DR is contained in a region S like above. 

Then there exists a lifting L~o that ends at a0 or a~. In particular, this lifting inter- 

sects DR. 

On the other hand, if DR is not contained in any region S like above, it is clear 

that a lifting L~ o intersects DR. 

This proves Lemma 4.5. 

Fix 0 _< Jail -< [a21 < R < 1. We shall denote by ~ the point ~o and by C the 

curve Cio obtained in Lemma 4.5. 

Let ~i, 1 < i _< p, be some pre-images of  ~l by g* such that the liftings L~ of  

C by g having ~ as base point intersect the disk DR. Consider the partition 6' = 

{Ii . . . . .  Ip],  w h e r e  I i -:- [ ~ i , ~ i + l ] ,  if 1 _< i < p  - 1, and Ip = [ ~ p , ~ l ] "  

PROPOSITION 4.6. (P is a Markov partition with respect to g* and compatible 

with g. 

PROOF. It can immediately be seen that (P is a Markov partition with respect 

to g*. Let us verify the compatibility with g. 

Write r = (2 + R)/3  and define 

U/=  {z E C Ir < [zl < r - l , a r g ~ i  < a rgz  < arg~i+,] ,  

V2 _< i _< p - 1. Let ,/(t) = (1 - t)e i°tt), t E [0,1], be a parametrization of  C. 

Define also 

U1 = {z E C I r < Izl < r-l,O(Izl) < argz  < arg 42} 

and 

up = [z ~ f i r  < Izl < r - l ,arg  ~p < argz < 0([zl) l .  

Let V be a connected component of  g - l (Ui ) .  Assume, to obtain a contradic- 

tion, that V N I~, ¢ ~ and V f) 1; 2 :~ ®, where il and iz are distinct indexes. Then 

there exists a curve in V joining a point of  I~, to a point of  I~ 2. Observe that, by 

the Schwarz lemma, V doesn't intersect DR and hence this curve must intersect 

Li3, for some index i3. But a point of  intersection of  these curves must be in 
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V C g - l ( u i )  and in Li3 C g-~(C).  This is impossible, since by construction 

U,- tq C = ~3 (see Fig. 4). Thus (P is compatible with g. 

Let a E S ~ be such that arg~l  < argot < argO2 and g(ot) = Gio, for  some 

1 _< io -< p. Consider the parti t ion (P~ = IJo,JJ . . . . .  Jpl, where Jo = [ ~ l , a ] ,  

Jl = [ct,~2] a n d J i = I i ,  ¥2<_i<_p. 

PROPOSITION 4.7. Suppose that there exists a curve C~ starting at ~io, intersect- 

ing DR and such that its lifting by g having c~ as base point, denoted by L1, inter- 

sects DR. Then (P~ is a Markov partition with respect to g* and compatible with g. 

u, u; 

L,j I I } " 

I \ / ' J  -Lj v, 

Fig. 4. The connected components of g-l  (UT) do not intersect the curves Lj. 



PROOF. 

and 

Define 

W0 = [Z ~ C] r  < Izl < r-~,O(Izl) < argz < argct}, 

w~ = {z ~ Cl r  < Izl < r - l , a r g  °t < argz < arg ~2], 

W,o-, = {z E CI r < Izl < r-l,arg/Jio-I < argz < 01 (Izl)} 

W~o = {z ~ e l  r < Izl < r-1,0, (Izl) < arg Z < arg ~io+1 }, 

where ~ (t) = (1 - t ) . e  i°'Ct), t E [0,1], is a parametrization of C~. Define also 

W~ = U~, for the other indexes i. We shall show that <P= is a Markov partition with 

respect to g* compatible with g with associated disks W~, 0 _< i <_ p. 

Since (P is a Markov partition with respect to g* compatible with g, we must 

only verify that if V is a connected component of g-~(W/) such that Vt'I S ~ C 

[~1,~2], then in reality Vt') S 1 C [~l,O~] or Vf') S 1 C [Ol,~2]. 

Observe that we took W, as a slight modification of U, in such a way that it 

doesn't intersect the curve C1. If Vt') [~t ,a]  #: ~ and Vt') [o~,~2] ~: O, since V 

doesn't intersect DR, and using the hypothesis, we conclude that V t"l L 1 :# ~ .  

Hence there would exist a point in V whose image would be in Cl, which is a 

contradiction. 

This proves Proposition 4.7. 

LEMMA 4.8. Let 6t be a partition of  S l into intervals. Fix Ii E (R, Bj E fit <~) 

and let Ui be an open set such that Ui n s j = Ii. Consider a holomorphic function 

Gn, i , j  : U i --* C whose real part is given by 

ReG~,i,j(z) = ~ loglwl, 
gn(w)=z 

w~ Vj 

where V i is the union of  the connected components o f  g-n(Ui) that contain Bj. 

Then 

Ti~Bjgn(z) = I G~,ij(z)l, 

VZ EI i .  Consider a holomorphic function Gn, i,j : U~ ~ C whose real part is given 

by 

Re(~n,i,i(z) = ~,  log iwI, 
g~(w)=z 

w~ V 7 
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where U~ is a ,c-extension o f  Ui and V] is the union of  the connected components 

o f  g-n( U~ ') that contain By. l f  Gn.i, i lv, = Gn.ij, then 

I(Tt, ajgn)'(z) [ <_ AX(V]  N S ' ) ,  

VZ EI i ,  where A is a constant that depends only on the regions Ui and U~. 

P R O O F .  Indeed, 

1 
IGn.i,j(z)[ = ~a = TI~Bjgn(z), 

g"tw)=z ](gn)'(w)[ 
weBj 

vz E/~.  The second claim is a consequence of  Proposition 3.4. 

LEMMA 4.9. Let 6' be a partition as in Proposition 4.6. I f 2  <_ i <_ p - 1, there 

exists a -c-extension U~" of  Ui such that G,,~.Jlv, = Gn,i,j. 

PROOF. We write r I = (1 + 2R) /3  and do = minlllil; 1 < i -<pl. Define 

U7 = {z E C I rl < Izl < ri-l ,arg ~i - do~2 < arg z < arg ~i+l + do/2] ,  

v2 < i < p - 1. Then U7 is a y-extension of  U~, for a certain -C = -c(R,do). Be- 

sides, U7 doesn't intersect C. So we are sure that each connected component of  

g-n(U~') intersected with S l is a subset of  an atom of  (P. It follows then that the 

holomorphic functions d,,i.~ : U7 - C whose real parts are given by 

Re an, i,J(Z) = E log I w[ 
gn(w)=z 

w~Vf 

are really extensions of Gn,i,j, proving the lemma. 

PROPOSmON 4.10. The partitions 6' have bounded distortion. 

PROOF. It follows from Lemmas 4.8 and 4.9 that if 2 < i < p - I, then 

vz E Ii. Equivalently 

I(Tt, Bjg")'(z)l ~ AX(V~ f) SI),  

suPl(Ttis~gn)'(z)[ <_AX(V 7 N S ' ) .  
z~li 
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Since each point  of  S ~ can be, at most,  an element of  two U~', 1 _< i _< p,  the same 

is t rue for  the Vf, 1 _< j <_ s. Hence  

and therefore  

X(Vf)  _< 2 
j=l  

supl(Tt, Bjg")'(Z) I <_ 2A, 
j=l  zEli 

proving that  the parti t ions 6' constructed above have bounded  distort ion.  

PROPOSITION 4.1 1. Consider a partition 6"~ as in Proposition 4.7. Let Z be a 

neighborhood Of Ll without critical points. Then 6", has bounded distortion with 

a constant that depends on g ( Z ) .  

PROOF. We prove first that  if 2 _< i ___ p - 1, there exists a -y-extension W• o f  

IVi such t ha t  Gn, i, j l w i  = Gn,i,j. Let do = min l l J i l ; 0  _< i _<p}. Define 

w7 = {z ~ Clr,  < Izl < r / - ' , a rg  ct - do~2 < a r g z  < arg ~2 "~- do /2 ] ,  

W?o_i -- [ z ~  Clrl  < Izl < r / - l , a rg  ~io-i -do~2 < a r g z <  arg ~io + d/2} 

and 

WTo = [ z E C] rl < ] z] < ri -l ,  arg ~io - d /2  < arg z < arg ~io+1 + do/2},  

where d is such that  g ( Z )  D X := {z E C l r l  < Izl < r l l , a r g  ~io - d < a r g z  < 

arg ~io + d}. For  the other  indexes take W/v = U7, as in Lemma  4.9. Then  W7 is 

a 3,-extension o f  W/, ¥1 < i _< p - 1, where "y = "y(R, do,d).  And if i ~ io and i #: 

io - 1 we prove as in L e m m a  4.9 that  C'n,i,jl w~ = Gn, i.j. 
The diff iculty that  appears in this case is with the indexes io - 1 and io (recall 

that  g ( a )  = ~io)- The  extensions * "~ Wio-~ and W~o intersect the curve C1 and hence 

a connected component  of  V] of  g-l(W~o_l) or g - l ( W 7  o) that  intersects [t~,~2] 

can also intersect [ ~ 1,0~]. 

But since the connected components  of  g - l ( X )  are simply connected,  we have 

that ,  in the first case, g(V]  tq [a ,~2])  C I~ o, while in the second case, g(V]  tq 

[ ~ ,a ] )  c I~o-~. 
This proves that  the f u n c t i o n s  Gn,i,J : W ?  ~ C are really extensions o f  Gn.~,j, if  

i = io or i = io - 1 .  
Applying then the same reasoning used for the part i t ion 6" in Proposi t ion  4.10 

we prove that  6"~ has bounded distortion, with a constant that depends on g(Z ) .  
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5. Limit behavior of the Markov partitions associated to approximations o f f  

L e t f  be an inner function with f (0 )  = 0. It is well known that there exists a se- 

quence (fk) of  finite Blaschke products converging uniformly to f on compact 

subsets of  D. Let Ck be the basic curve used in the construction of  Markov par- 

titions with respect to f~  compatible with fk, which was done in section 4. And let 

Li, k, 1 <_ i <-- degree(fk),  be the liftings of  Ck by  f k .  Define 

£ n , k  = [Li, k[Li ,  k f)  DR --/= (~}.  

LEMMA 5.1. There  ex is t s  N = N ( R )  E N such  that  s t  :=  #£R,k < N. 

PROOV. Write 7/(t) = limk_~ ~k (t) ,  where ~/k ( t)  is a parametrization of  Ck. 

Then ~ is a parametrization of a curve C, C ~ -near to the line joining o~ to z~. We 

are considering that z~ is the end point of  the curve Ck, vk  E N, and that the 

starting points o~,k are converging to o~. 

Take 0 < R < 1 such that f (Sn )  intersects C transversally, where SR = 

[z E D I Izl = n ] .  Say 7q(ti) E f (Sn ) ,  1 _< i < l. Write A i = (ti ,  ti+ l ), 1 <_ i <_ l - 

1, A0 = (0, tl ), and Az = (tt, 1). Then, for k sufficiently large, Ck intersects fk (SR) 

transversally at the points ~(ti, k), 1 < i < 1, forming the intervals Ai,  k = 

(ti, k , t i+l ,k ) ,  1 < i_< l - -  1, Ao, k = (0, h,k) and Az, k = (tz.k,1). 

Consider the function NR, k : D \ f g ( S n )  ~ N given by 

1 ( f/,(z) dz, 

which indicates the number of  zeros o f fk  - ~" on DR. Consider also the function 

N k  : (.Jo<<.i<_lAi, k ~ N given by 

N ~ ( t )  = NR, k ( • k ( t ) ) .  

Then Nk is constant in each interval Ai,  k and assumes the value mi, independent 

of  k. Hence 

#{Ly, k I =j,,(Ai, k) O DR ~: O} = mi ,  

where uj, k is a parametrization of  Ly, k, and therefore 

I 

Sk = #•R,k < ~-a mi  = N .  
i=l  

Let wj, k ( R ) ,  1 < j <_ s k ( R )  be the starting point of  Lj, k E £ n , k .  It follows 

from Lemma 5.1 that taking subsequences we can assume that sk (R) = s (R), if 
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k >- ko(R), and that ooj, k(R ) converges to ~0j(R), if 1 <_j <_ s(R) .  Write fl(R) = 

{oJj(R); 1 <_j<_s(R)}. 

If Rl < R2, then s (Ri )  <- s(R2) and f l (Rl)  C fl(R2). Moreover, s(R)  tends to 

infinity when R tends to 1. The subsequence of (fk) that we use for defining t2 (R) 

depends on R. But, using the diagonal process, we can use the same subsequence 

for defining fl(Rj), where (Rj) is a sequence tending to 1. Write fl = [3 fl(Rj).  

PROPOSITION 5.2. Let I C  S ~ be an interval such that I N  fl = 0 .  Then f *  is 

analytic and injective in I. 

For the proof of this proposition, we shall need the following theorem, due to 

Frostman, which can be found in [Co, p. 50]. 

THEOREM 5.3. Let f be an inner function. There exists a set E ( f )  C D of  zero 

capacity such that i f  ~ q~ E ( f )  then T~ o f  is a Blaschke product, where 

z - ~  
T~(z) - 1 - ~z" 

PROOF OF PROPOSITION 5.2. Observe first that, if z~ ~ E ( f ) ,  then f*  is analytic 

at x E S 1 if and only if the sequence of pre-images of z~, denoted by (aj), doesn't 

accumulate at x. 

Suppose that f*  is not analytic at x E I. Then there exists a subsequence of (aj) 
converging to x. We shall denote this subsequence by the same indexes of the orig- 

inal sequence. 

Fix 0 < R < 1. 

CLAIM. We can assume that Lj, k E ~R,k for only a finite number of values 

of k. 

Indeed, suppose that J0 is such that Ljo.k E a~R,k for infinite values of k. Then 

taking subsequences of (fk) we can assume that Ljo,k E ~R,k for all values of k. 

Therefore, it follows from Lemma 5.1 that 

We exclude then ajo from the sequence (aj). If there exists another Jl such that 

Lj,,k E ~R,k for infinite values of k, we repeat the procedure and exclude aj, from 

the sequence (at). It is clear that after at most N steps of this procedure we will 

arrive at a situation where for each j E N, Lj, k E ~R,k for only a finite number of 

values of k. 

This proves the claim. 
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Then, given j ,  there exists ko = ko(j) such that Lj, k ~ £R,k, if k > ko. And the 

liftings Li, k end at points aj, k satisfying limk-~o, aj, k = aj. Since ~0 ~ / ,  ¥o~ E fl, we 

can assume that Lj, k intersects Cj, (or Cj2), if k > ko, where we have used the fol- 

lowing notation: 

I is the interval (a, b), ,/1 is an interval contained in (x, b); J2 is an interval con- 

tained in (a,x) and 

c, = Ire'°l 0 <_ r < 1,e i° E J}. 

We conclude that if e i° E Jl (or J2), there exists zk = Izkle i°, with Izkl > R 

such that fk(zk) E Ck. It follows then from Proposition 5.5, proved below, that 

f * (e  ie) = ~01 for a . e .  e ie E J1. This contradicts the fact that X((f*)- l (x))  = 0, 

vx E S ~. Hence f*  is analytic in L 

If  f*  were not injective i n / ,  there would exist ~" E I such that f*(~') = o~1. By 

analytic continuation, there would exist ~'k E / ,  ~'k converging to ~" and such that 

fk (g'k) = o~l,k. Moreover, the lifting of Ck bYfk having ~'k as base point would in- 

tersect DR, for some 0 < R < 1 independent of k. Hence ~" E fl, contradicting the 

hypothesis. 

This proves the proposition. 

LEMMA 5.4. Let f be an inner function with f '  E N. There exists a sequence 

(fk) o f  finite Blaschke products converging to f uniformly on compact subsets o f  

D such that 

g 
L = s u p /  " '" 'loglJkldX<°°- 

k , JS  1 

PROOF. By Theorem 5.3, we can choose ~ E D such that T~ o f  is a Blaschke 

product. Choose a sequence (fk) of finite Blaschke products converging to f uni- 

formly on compact subsets of D and such that (T~ °fk) is a sequence of partial 

products of T~ °f.  Then 

I(r~ °A)'(x)l < I((T~ °f)')*(x)l, 

vx E S ~, and therefore 

1 +  I,~1 
I ( A ) ' ( x ) l  < - I((r~ o f ) ' ) * ( x ) l  

- 1 I,~1 

- L ~ J  I ( f ' ) * ( x ) l .  
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Hence 

L < 2 log - -  

proving the lemma. 

1+1~1 

1 -I 1 
+ L '  logl(f ' )* I dk  < 0% 

PROPOSITION 5.5. Let f be an inner function with f '  E N. Let (fk) be a se- 

quence of  finite Blaschke products converging uniformly on compact subsets of  D 
to f and satisfying the property of  Lemma 5.4. Then for a.e. el° E S l the follow- 

ing is true: 
Given any sequence (z+) of  points in D with arg(z+) = 0 and converging to e ie, 

there exists a subsequence (kj) such that fkj(Zk) converges to f*(ei°). 

The rest of section 5 is devoted to the proof of this proposition. 

Given c~ > 1, consider the Stoltz angle at e i° 

I e++/ r~(e ; ° ) =  z ~ D  i - - - ] ~  <°~ . 

If  u is a function of D define 

u#(ei°)= sup lu(z)l. 
zEPc~(e iO) 

P~OPOSITION 5.6. Let f be an inner function with f '  E N. Let ( f , )  be a se- 

quence o f  finite Blaschke products converging uniformly to f on compact subsets 
of  D and satisfying the property of  Lemma 5.4. Then for a.e. e iO E S 1 there exists 

a subsequence (kj) such that 

sup(lf],jl)" < ~ .  
J 

Let us first see how Proposition 5.5 follows from Proposition 5.6. 

Take the subsequence (kj) given by Proposition 5.6. We can suppose that 

(fkj(ei°)) is converging to f*(e  ~°) (see Lemma 6.1). Given E > 0, take Jo > 0 such 

that if j > Jo then 

If*(e i°) - fk j (e i°)  I < + / 2  

and also 

+ sup( f;j )+. 1 - I % 1  < 
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It follows that 

e i0 If*(e i°) - A j ( z , ) l  -< If*(e i°) - A j (  )1 + IA j (d  °) - A j ( % ) I  

E 
_ - + ( 1 - '  ' " - - " ,  , - -  -,¢~,-Izkil~suptlf'l~#< E~ 

2 j 

proving Proposition 5.5.  

Let us now prove Proposition 5.6. 

PROPOSITION 5.7. Let g be a holomorphic function o lD such that [g(x)[ _> I, 

vx E S j. Then 

A~ 1 fo 2r X({e i° E s~ l lgl"(e '°) >/3]) _< loglg(e")l dt 
log# 2 r  

where ot > 1,/3 > 1 and As is a constant that depends only on oL. 

and 

Proposition 5.6 follows from Proposition 5.7 in the following way: 

Write 

EO,, o = {e ̀ e E St llf;,l#(e '°) > ~, v~ > ko} 

lff L = sup ~ loglf;Aeit)[ dt. 

By hypothesis, L is a finite number. Therefore, it follows from Proposition 5.7 that 

At~ p 
~(Eo,,o) _< L log/~ 

and hence, since the sets E~.k are increasing with k, 

X( U Ea k) < L A-----z-~ 
\k~N ' / -- Iog/~" 

But if e i° q~ (U,~N E~,k), then there exists a subsequence (kj) such that 

i # iO suplf~jl ( e )  < oo. 
J 

Making f3 tend to infinity, Proposition 5.6 is proved. 
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The problem is now reduced to proving Proposition 5.7. For this, we need to in- 

troduce the following notion: 

Let h be an integrable function on S ~. The Hardy-Littlewood maximal function 

of h is 

1 f Ih(ei')l dt Mh(e i°) := sup 

where the sup is taken over the intervals I that contain e ~° in its interior. 

We shall use two theorems concerning maximal functions, namely: 

THEOREM 5.8. Let u be a harmonic function on f). Then there exists a constant 
A~, depending only on ~, such that 

u#(e i°) < A,~Mu(ei°). 

THEOREM 5.9. Suppose that h E ~ l ( S t ) .  Then, for any 3 > 0, 

2 
X(le '° ~ s~ IMh(e i°) > HI) ~ ~ Ilhll~. 

The proof of  these theorems can be found in [G, pp. 22-25]. Let us prove Prop- 

osition 5.7. 
Let g = B.gl,  where B is a finite Blaschke product and g~ has no zeros in D. 

Since I g[ < Igll in D, 

k( [e  '° E Sl[[gl#(e i°) > 3]) < X([e i° E Sl [ [gl [#(e ~°) > 3}) 

= ~,(I e'° ~ S ~ Iloglg~ I#(e '°) > log ill). 

Applying Theorem 5.8 to the harmonic function log lgl[ we obtain 

X({e '° ~ S~[lgl#(e '°) > 3}) -< k({e i° ~ S 1 [A~Mlog[gl[(e i°) > log 3}). 

But since Ig[ = Ig~l in S 1, Mlog[g l  [(e i°) = Mloglgl(ei°). Hence it follows from 

Theorem 5.9 that 

2A~ 1 f02x X([e/° E Slllgl~(e i°) > 3}) < loglg(eit) I at, 
log 3 27r 

proving Proposition 5.7, since the constant 2 is not relevant. 
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6. Proof of Theorem 2.2 

Let f be an inner function with f(O) = O. Consider a sequence (fk) of finite 

Blaschke products with fk(O) = 0 converging uniformly to f on compact subsets 

of D. 

LEMMA 6.1. The sequence ( f~ )  converges to f *  in the norm of  the Hilbert 
space £2($I,C). 

PROOF. Let (f~*) be a subsequence of (f~) converging to a function F weakly 

in £2(S1,C). We have, using the Poisson formula, that for any z E D, 

and hence 

f ( z )  = lim fk,(Z) 
I~oa 

= lim ~1 f2~r 
/~= 2r  JO Pz(t)f~,~(e it) dt, 

if02" f ( z )  = ~ Pz ( t )F(e  it) dt. 

Therefore, F(e  #) =f*(ei t) ,  for a.e. t E [0,2r]. It results then, from the fact that 

the unit ball in .t~2(S~,C) is weakly compact, that the sequence (f~) converges to 

f* weakly in ~2(S~,C). Denoting by ( , ) the hermitian product of the Hilbert 

space £2(S1,C), we have 

- -  * - - ' ~  ~ , 7 ~  
( f *  - f ~ , f *  - f ~ )  = ( f * , f * )  + ~f~,f~ ) - f ,f~ ) - ( f ~ , f ; )  

= 2(1 - Re(f*,f~)) .  

But since the sequence (f/~) converges to f* weakly, ((f*,f~)) converges to 1 and 

therefore (llf* -f~ 112) converges to 0. 

Another proof of this lemma can be found in [W]. 

Since (f~) converges to f* in ~2($1,C), there exists a subsequence converging 

a.e. In this section we shall always assume that (f/~) converges to f*  a.e. 

Let Fk,F: (X,~,#) ~ (X, Ct,#) be endomorphisms. We say that (Fk) converges 

to F in measure if, for any S E 6~, 

lim # ( F ~ ( S ) A F - ~ ( S ) )  = O. 
k~oo 
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L E M ~  6.2. Suppose that (Fk) converges to F a.e. Then (Fk) converges to F 
in measure. 

PROOF. Take S E (L Then 

# ( F ~ q ( S ) A F - I ( S ) )  = fx - XF-Its) l dl, t 

= f x  [ x s ° r k -  Xs°F[ d#. 

But (] Xs ° Fk -- Xs ° F[) converges to 0 a.e. The lemma follows by the dominated 

convergence theorem. 

LEMMA 6.3. Suppose that (Fk) converges to F in measure. Let A g, A, Bk, B E 
(~ be such that #(A~AA) -+ 0 and #(BkAB) ~ O. Then (TAkBkFk) converges to 

TABF weakly, i.e., for any S C A, 

lim £ T&skFkd# = fs TABFd#. 
k~oo 

PROOF. Take S C A. Since 

I/.t(F-l(S) CI B) - #(F~q(S) CI B,) I _< #(F-I(S)AF~-I(s)) + I~(BABk), 

we have 

and therefore 

We conclude that 

lim g(F~q(S) t3 Bk) =/-t(F-l(S) f') B), 
k~o0 

lim £ TA~BkFkdl, =/x(F-I(S) ("1B). 
k~¢o 

lim £ T&B~&dt,= £ TAsFd#. 
k~oo  

COROLLARY 6.4. Let Ik,I be intervals of S ~ and Bk,B be Borel subsets of  S ~ 
such that k(IkAI) ~ 0 and )~(BkAB) -~ O. Then (T1,B,f~) converges weakly to 

TIJ*. 

PRoof. Immediate from Lemmas 6.2 and 6.3. 
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DEFINITION 6.5. Let (P = lit  . . . . .  Ip} be a partition of S ~ into intervals. Sup- 

pose that (P = limk_,~, (pk, where (pk = (I~,k . . . . .  Ip.k} are Markov partitions with 

respect to f~  and compatible with fk. Suppose also that the open sets Uj.k associ- 

ated with the intervals Ii., (see Definition 4.2) are converging to open sets U~ con- 

taining Ii. We say then that (P is a Markov partition with respect to f*  compatible 

with f .  

REMARK. In the definition above, the open sets U~,k are converging to the 

open set U~, 1 _< i _< p, if for each compact set B C Ui, there exists ko > 0 such 

that B C Ui, k, if k > ko. 

LEmvL~ 6.6. Let (P = [Ii . . . . .  Ip I be a Markov partition with respect to f *  and 

compatible with f.  Denote by Bj, 1 < j < s, the atoms of(P ("). Then TtiBj(f*) n is 

real analytic, Vn E N, Vl < i _< p, Vl < j  < s. 

PROOF. If  1 < i < p, consider the open set U~,k associated with the interval Ii, k 

of partition (Pk. Let Vj, k be the union of the connected components off~-"(U/,k) 

that intersect Bj,~. 

Since the Markov partition (Pk is compatible with fk, Vj, k t') S ~ = Bj, k. Hence, 

if we denote by Tk : Ui, k ~ C a holomorphic function whose real part is given by 

R e T k =  ~ log Iwl, 
f k ( w ) = z  

w E  Vj, k 

then IZ;,I Iz,.k = T,,.kBj.,f;, (see Lemma 4.8). 

But it follows from Proposition 3.2 that (Tk) is a normal family of holo- 

morphic functions. In reality, these functions are defined in slightly different do- 

mains, but this causes no difficulty since their domains are converging to the open 

set U,-. (We can apply the reasoning to any open set W~ such that W~ C Ui.) 

Hence there exists a holomorphic function T defined on U; that is the limit, 

uniform on compact subsets of Ui, of some subsequence of (TD. And therefore, 

( T;II,, ,) is converging uniformly to [ T'II, . 
n TJ n But we know from Corollary 6.4 that (Tl~.kBj.kf~) converges weakly to z~Bjf , 

T and hence [T'][ 6 = l~Bif , proving the lemma. 

DEFINITION 6.7. Let (P = {I~ . . . . .  lp] be a Markov partition with respect to f *  

and compatible with f.  We say that (P has bounded distortion if the partitions (Pk 

have bounded distortion with a constant A independent of k (see Definition 4.3). 

LEMMA 6.8. Let (P be a partition with bounded distortion. Then (P satisfies 

property (P2) of  Theorem 2.2. 
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PROOF. If we denote by By.,, 1 _< j _ r, the atoms of  6"(k n) which are taken by 

(f~,)(') onto Ii, k, where i 4:1 and i ~:p, then 

~11 * t sup I[Ti,.kSj.k(f~)"](Z)l < A .  
j = l  zEli, k 

Taking the limit in k, we have 

/'/ I supl[Tz, Bj(f*)  ](Z)[ < A, 
j = l  zEli 

and hence 
r 
)_] osc T1,Bj(f*)" <- A, 

j = l  

which proves the lemma. 

Let us prove now Theorem 2.2. Consider the set fl defined in section 5 and the 

distinguished element o:1 E ft. 

Case A.  f *  is not analytic in any interval of the form (00~,b) or of  the form 

(b,o~l). 

In this case, it follows from Proposition 5.2 that there exists 0 < R < 1 such that 

fl(R) contains points ~02 E (tOl,001 + e) and oJ 3 E (001 - e,O~l). Take a subset ~ (R)  

of  fl(R) containing 001, w2 and o: 3 and such that #~,(R) -~ < 1. Consider the par- 

tition 6", of  S 1 into intervals whose extremities are the points of  ~ (R). 

Cthlra A1. 6"~ satisfies property (Pl)  of  Theorem 2.2. 

6"~ is the limit of  the partitions 6"k, that are Markov partitions with respect to 

f~  compatible with fk, by Proposition 4.6. Moreover, the open sets U,-,k associated 

with the intervals of the partitions 6"k (see Proposition 4.6) are converging to the 

open sets 

U/=  {z E C ] r  < Iz] < r - l , a rg~ i  < a rgz  < arg~i+,] 

i f 2 _ < i < p - l ,  to the open set 

U l = { Z E C t r < ] z ] < r - ~ , 0 ( 1 -  z])<argz<arg~2} 

if i = l, and to the open set 

Up= {z E Cir  < Izl < r-l ,arg~p < argz < O( 1 - I z l ) }  

if i = p ,  where rl(t) = (1 - t)e i°tt), t E [0,1], is a parametrization of  the curve 

C = lim Ck. Hence 6', is a Markov partition associated to f *  and compatible 
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with f. It follows then from Lemma 6.6 that the transition functions T~,Bj(f*)" 

are real analytic, proving that (P~ satisfies (P1). 

CLAIM A2. (P~ satisfies property (P2) of  Theorem 2.2. 

We know that the partitions (Pk have bounded distortion with a constant A that 

depends only on the open sets U,..k and UZk, 2 _< i < p - 1 (see Lemma 4.8). Since 

these open sets are converging to U~ and UT, respectively, we can choose the con- 

stant A independent of  k. Hence (P~ has bounded distortion, and therefore, by 

Lemma 6.8, satisfies (P2). 

The properties (P3) and (P4) are satisfied by the construction of  the parti- 

tion (P,. 

Case B. f *  is analytic in an interval (60~,b) but not analytic in intervals of  the 

form (b,601). 
We can suppose, w.l.o.g., that f *  is analytic and injective in (~0~, 60~ + e) since 

otherwise f~(R) N (60~,60~ + e) ¢ O, for some 0 < R < 1, by Proposition 5.2. 

Then we would prove the properties (P1), (P2), (P3) and (P4) of  Theorem 2.2 as 

in case A. 
We have that I(f ' )*(x)]  > a > 1, vx  E S ~. Hence if f *  is analytic and injective 

in (f*)J(601,601 + e), 0 _<j _< N, then ¢.a N< 1 and therefore N_< Blog( l / e ) ,  

where B is the constant 1/(log a). 
Let No be the smaller value of  j such that f *  is not analytic and injective in 

(f*)/(601,601 + e). Then, it follows from Proposition 5.2 that there exist 60o E 

fl(R) and ao E (601,601 + e) with ( f * ) N ° ( o t 0 )  = 600, for some 0 < R < 1. Write 

~j = (f*)/(C~o), 1 <-j<-No. 
Take a subset ~ ( R )  C fl(R) containing 600 = ~io and 60| = ~ and such that 

(#~(R)  + Blog  ! ) . ~  < 1. 

Let (P, be the partition whose intervals have extremities in the set ~,(R) and in 

[otj;O <- j <. No}. 
We shall prove now that (P, satisfies the properties (P1) and (P2) of  Theorem 

2.2 assuming that No = 1. If  No > l, the proof  is similar. 

CLAI~ B1. (P, satisfies property (Pl)  of  Theorem 2.2. 

Write (P, = [Jo,Jl  . . . . .  Jp], where Jo = [~1,C¢o], J2 = [C~o,~2] and J/ = 

[~i,~i+~], if 2 < i _ p,  and denote by C~o,k the unique zero of  the equation 

fk(z)  - ~io,k near O~o. Then d~, is the limit of  the partitions (Pk = {Jo, k,J~,k . . . . .  

Jr, k], where Jo, k = [~l,k,Ot0,k], Jl,k = [Ot0,k,~2,k} and J/,k = [~i,k,~i+~,k], if 

2<_i<p .  
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Since f *  is analytic at cto, we can choose 0 < R < 1, independent of  k, such that 

there exist curves C~,k starting at ~io,k and intersecting DR whose liftings by fk 

having eq,k as base point, denoted by L~,k, intersect DR. We can also choose the 

curves Cl,k in such a way that they converge to a curve C~. 

By Proposition 4.7, (Pk is a Markov partition with respect to f~  compatible with 

fk. Moreover, the open sets W/,k associated with the intervals J~,k are converging 

to the open set 

if i = 0, 

i f / =  1, 

Wo= {zE C I r <  Izl < r - t , 0 ( 1 -  Izl) < argz < argoe} 

W1 = {z E C Ir < Izl < r - ' ,argc~ < argz < arg ~21 

W~o_l = {z ~ C l r  < Izl < r - l , a rg  ~2io-1 < argz < 01(1 - Izl)l 

i f / =  i o -  1, 

W/o = {zE  C I r <  Izl < r-1,Ol( 1 - Izl) < a r g z <  arg  ~io+, } 

if i = i0, and W~ = Ui, for the other indexes, where ~l ( t )  = (1 - t ) ' e  i°~(t), 
t E [0,1], is a parametrization of Cl. Hence 6 ~, is a Markov partition with respect 

to f *  and compatible with f and therefore, by Lemma 6.6, 6 ~, saitsifes (P1). 

CLAIM B2. ~ ,  satisfies property (P2) of  Theorem 2.2. 

Let Z be a neighborhood of Ll,k where fk has no critical values, vk _> ko. We 
can choose such a Z independent of  k, by the analyticity o f f *  at Oto. It follows 

then from Proposition 4.11 that the partitions (P, have bounded distortion, with 

a constant A independent of  k. Hence (P, has bounded distortion and therefore, 

by Lemma 6.8, (P, satisfies (P2). 

Properties (P3) and (P4) are satisfied by the construction of  the partition (P,. 

We now have to analyse the possibility that f *  is analytic on an interval of  the 

form (b, ¢0~ ) and not analytic on any interval of  the form (o~1, b). But it is clear 

that this case is analogous to the case B. Similarly, the case where f *  is analytic in 

intervals of  both forms, (b,o~l) and (~ l ,b ) ,  also can be reduced to case B. 

We shall now prove that for every sequence of  e's tending to zero, the corre- 
sponding sequence of  partitions (P, satisfies properties (P5) and (P6) of  Theorem 
2.2. 

(P5) is obviously satisfied. We must then prove (P6). 
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PROPOSITION 6.9. 

PROOF. Write 

and 

V (f.)-n(p~, = ( ~ ( s l ) .  
n_>0 
/_>l 

A = Ix E Si If* is analytic and injective at x}, 

Q = {q E S~lq is an extremity of an interval where f*  is analytic] 

B = (A U Q)C. 

Let Tbe a Borel set, T C  B. It follows from Proposition 5.2 that, for each x E 

T, there exists l(x) such that I(P,,x ~ (x) I < e, where IEI denotes the diameter of E. 

Hence T E  Vl~_t6~ w 

Define N:  A --* N U [ ~ ] by 

N(x)  = max{n E N] (f*)n(x) E A } .  

CLAIM. N is measurable in Vn~_o.l-_l (f*)-n6~,,. 

Indeed, observe that: 

If x E N - l ( n ) \ U q , o  ( f * ) - q ( o )  and y E N - l ( m ) \ U q e o  ( f*) -q(Q) ,  where 

m > n, then there exists I such that x and y are in different atoms of (f*)-<n+ 1)6," 

This observation is a consequence of Proposition 5.2 and proves the claim. 

Let R C A be a Borel set. To prove that R E Vne0,tel (f*)-"6~,, it is sufficient, 

by the claim above, to prove that Rn = R n N - l ( n )  E Vn~_o,t_~l (f*)-n(P,,, Yn E 
N U  [oo}. 

Case 1. n = oo 
In this case, if x and y are in the same atom of (f . )-n(p, ,  then I(x,y)l < a -n, 

where a = inf~zs~ I(f ')*(x)l. Hence 1Ro. (1 (f*)-nCP,,(x)l < a -n, vx  E Roo. 

Therefore 

Ro~ E V (f*)-n(p,,. 
n>__O 
l>_l 

Case 2. n < oo 
In this case, if x and y are in the same atom of (f*)-tn+lkP,,  then (f*)n+lx 

and (f .)n+ly are in the same atom of (P, and are in B, by the definition of N. 

Hence, if I is sufficiently large, 

IR, C~ (f*)-("+n6',,(x) I < ~. 
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Therefore 

R. E V (f* )-"(P,,, 
n->0 
I_>1 

proving Proposition 6.9. 

The proof of Theorem 2.2 is thus complete. 
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